Un recipiente de aluminio de 300g contiene 200g de agua a 10º C. Si se vierten 100 g más de agua, pero a 100º C, calcular la temperatura final de equilibrio del sistema. R: 34.6º C.
Como puede verse, ambos coinciden completamente bien. Utilizando otros hechos conocidos, a saber, que las derivadas de orden superior de la temperatura con respecto a x son igual a cero en x = δ, se puede expander el polinomio que describe a T(x,t) para obtener resultados ligeramente diferentes. Dependiendo del orden del polinomio que se usa, los resultados pueden ser mas o menos exactos que los que se obtienen con el polinomio de segundo orden que utilizamos en esta sección.
Se pueden aplicar los resultados que se obtienen por medio de la integral de balance de calor y por medio de la solución exacta a sólidos finitos siempre y cuando el frente móvil de temperatura definido por δ no se mueva a través de todo el cuerpo. Por ejemplo, considere la pared que se muestra en la figura 4-18. Para valores de δ < L, será válida la distribución de temperatura.
Se pueden aplicar los resultados que se obtienen por medio de la integral de balance de calor y por medio de la solución exacta a sólidos finitos siempre y cuando el frente móvil de temperatura definido por δ no se mueva a través de todo el cuerpo. Por ejemplo, considere la pared que se muestra en la figura 4-18. Para valores de δ < L, será válida la distribución de temperatura.
Comentarios
Publicar un comentario