Ir al contenido principal

Entradas

Busca en el Sitio

CAPACIDAD CALORICA DE UN GAS IDEAL

 Se ha encontrado que la temperatura de un gas es una medida de la energía cinética promedio de traslación del centro de masa de las moléculas del gas, sin considerar la energía asociada al movimiento de rotación o de vibración de la molécula respecto al centro de masa. Esto es así, porque en el modelo simple de la teoría cinética se supone que la molécula es sin estructura. De acuerdo a esto, se analizará el caso simple de un gas ideal monoatómico, es decir, de un gas que tiene un átomo por molécula, como el helio, neón o argón. Cuando se agrega energía a un gas monoatómico contenido en un envase de volumen fijo (por ejemplo calentando el envase), toda la energía agregada se ocupa en aumentar la energía cinética de traslación de los átomos. No existe otra forma de almacenar la energía en un gas monoatómico. De la ecuación 12.20, se tiene que la energía interna total U de N moléculas (o n moles) de un gas ideal monoatómico se puede calcular de: De esta ecuación se deduce que para un ga
Entradas recientes

PROCESOS TERMODINAMICOS - Proceso isotérmico

 Un proceso isotérmico es aquel que se realiza a temperatura constante. La gráfica de P versus V para un gas ideal, manteniendo la temperatura constante es una curva hiperbólica llamada isoterma (figura 13.9). Como la energía interna de un gas ideal es solo función de la temperatura, entonces en un proceso isotérmico para un gas ideal ΔU = 0 y Q = W. Se calculará el trabajo para un gas ideal que se expande isotérmicamente desde el estado inicial i al estado final f, como se muestra en el gráfico PV de la figura 13.9. La isoterma es una curva hiperbólica de ecuación PV = cte. El trabajo realizado por el gas se puede calcular con la ecuación 13.5, usando la ecuación de estado de gas ideal, PV = nRT, para reemplazar P: Como la temperatura es constante, se puede sacar fuera de la integral: Ejemplo 13.9 Calcular el trabajo realizado por un mol de un gas ideal que se mantiene a 0º C, en una expansión de 3 litros a 10 litros.  Solución: como la expansión es isotérmica, el cálculo es directo r

PROCESOS TERMODINAMICOS - Proceso adiabático.

 Un proceso adiabático es aquel que se realiza sin intercambio de calor entre el sistema y el medioambiente, es decir, Q = 0. Al aplicar la primera ley de la termodinámica, se obtiene: ΔU = -W En un proceso adiabático, si un gas se expande (comprime), la presión disminuye (aumenta), el volumen aumenta (disminuye), el trabajo es positivo (negativo), la variación de energía interna ΔU es negativa (positiva), es decir la Uf < Ui (Uf > Ui) y el gas se enfría (calienta).   Los procesos adiabáticos son comunes en la atmósfera: cada vez que el aire se eleva, llega a capas de menor presión, como resultado se expande y se enfría adiabáticamente. Inversamente, si el aire desciende llega a niveles de mayor presión, se comprime y se calienta. La variación de temperatura en los movimientos verticales de aire no saturado se llama gradiente adiabático seco, y las mediciones indican que su valor es aproximadamente -9.8º C/km. Si el aire se eleva lo suficiente, se enfría hasta alcanzar el punto d

PROCESOS TERMODINAMICOS - Proceso isovolumétrico.

 Un proceso que se realiza a volumen constante se llama isovolumétrico. En estos procesos evidentemente el trabajo es cero y la primera ley de la termodinámica se escribe: ΔU = Q Esto significa que si se agrega (quita) calor a un sistema manteniendo el volumen constante, todo el calor se usa para aumentar (disminuir) la energía interna del sistema.

TRABAJO EN LOS PROCESOS TERMODINAMICOS - PRIMERA LEY DE LA TERMODINAMICA - Casos particulares.

 Sistema aislado. Para un sistema aislado, que no interactúa con los alrededores, no hay transferencia de calor, Q = 0, el trabajo realizado también es cero y por lo tanto no hay cambio de energía interna, esto es, la energía interna de un sistema aislado permanece constante: Q = W = 0, ΔU = 0 y Uf = Ui Proceso cíclico. Es un proceso que empieza y termina en el mismo estado. En este caso el cambio de energía interna es cero y el calor agregado al sistema debe ser igual al trabajo realizado durante el ciclo, entonces: ΔU = 0 y Q = W Proceso con W = 0. Si se produce un proceso donde el trabajo que se realiza es cero, el cambio en la energía interna es igual al calor agregado o liberado por el sistema. En este caso, si se le agrega (quita) calor al sistema, Q es positivo (negativo) y la energía interna aumenta (disminuye). Esto es: W = 0, ΔU = Q Proceso con Q = 0. Si ahora se realiza un proceso donde la transferencia de calor es cero y el sistema realiza trabajo, entonces el cambio de la

TRABAJO EN LOS PROCESOS TERMODINAMICOS - PRIMERA LEY DE LA TERMODINAMICA

 En mecánica la energía se conserva si las fuerzas son conservativas y no actúan fuerzas como la fricción. En ese modelo no se incluyeron los cambios de energía interna del sistema. La primera ley de la termodinámica es una generalización de la ley de conservación de la energía que incluye los posibles cambios en la energía interna. Es una ley válida en todo el Universo y se puede aplicar a todos los tipos de procesos, permite la conexión entre el mundo macroscópico con el microscópico. La energía se puede intercambiar entre un sistema y sus alrededores de dos formas. Una es realizando trabajo por o sobre el sistema, considerando la medición de las variables macroscópicas tales como presión, volumen y temperatura. La otra forma es por transferencia de calor, la que se realiza a escala microscópica. Considerar un sistema termodinámico donde se produce un cambio desde un estado inicial i a otro final f, en el cual se absorbe o libera una cantidad Q de calor y se realiza trabajo W por o s

TRABAJO EN LOS PROCESOS TERMODINAMICOS - Ejemplo 2

 Una muestra de gas ideal se expande al doble de su volumen original de 1m³ en un proceso para el cual P = αV2, con α = 5atm/m6, como se muestra en la figura 13.8. Calcular el trabajo realizado por el gas durante la expansión.

TRABAJO EN LOS PROCESOS TERMODINAMICOS - Ejemplo 1

 Ejemplo 13.7 Un gas se expande desde i hasta f por tres trayectorias posibles, como se indica en la figura 13.7. Calcular el trabajo realizado por el gas a lo largo de las trayectorias iAf, if y iBf. Considerar los valores dados en la figura. Solución: se calcula el área bajo la curva en cada proceso. De la figura 13.7, se tienen los datos: Pi = 4atm = 4.05x105 Pa, Pf = 1atm = 1.013x105 Pa, Vi = 2lt = 0.002m3 = VB, VA = 4lt = 0.004m3 = Vf.

TRABAJO EN LOS PROCESOS TERMODINAMICOS Parte 2

 Este trabajo depende de la trayectoria seguida para realizar el proceso entre los estados inicial y final, como se ilustra con la figura 13.6. Si el proceso que se realiza es a volumen constante Vi disminuyendo la presión desde Pi hasta Pf, seguida de un proceso a presión constante Pf aumentando el volumen desde Vi hasta Vf (figura 13.6a), el valor del trabajo es diferente al que se obtiene en un proceso donde primero se produce una expansión desde Vi hasta Vf a presión constante Pi y después se disminuye la presión desde Pi hasta Pf, manteniendo constante el volumen final Vf (figura 13.6b). Las áreas bajo las curvas en cada caso, tienen un valor diferente, es mayor en la figura 13.6b. Por lo tanto, el trabajo realizado por un sistema depende del proceso por el cual el sistema cambia desde un estado inicial a otro final. De manera similar se encuentra que el calor transferido hacia adentro o hacia fuera del sistema, depende del proceso. Tanto el calor como el trabajo dependen de los e

Tambien tienes que visitar