Se enfría un bloque de 40 gr de hielo hasta -50º C. Luego se agrega a 500 gr de agua en un calorímetro de 75 gr de cobre a una temperatura de 25º C. Calcular la temperatura final de la mezcla. Si no se funde todo el hielo, calcular cuanto hielo queda.
Consideramos una aleta rectangular de longitud, L, y espesor uniforme, t. La temperatura en su base (x = 0) es To y la extremidad de la aleta (x = L) pierde calor por convección. Suponga que la temperatura ambiente es T∞. Supongamos que todas las temperaturas son estables con respecto al tiempo. Se supone que los coeficientes convectivos de transferencia de calor para la superficie superior, la superficie en la base, y las extremidades, son idéntidos y se designan por h. También suponemos que el material de que está hecha la aleta tiene conductividad constante, k.
La figura 5-2 muestra la longitud, L, de la aleta dividida en (M-1) partes iguales, con longitud Δx, cada una de ellas dando por resultado M nodos. Con frecuencia resulta satisfactorio contar un valor de M igual a 10. En general, se mejora la exactitud de la solución cuando se hace crecer el valor de M.
La figura 5-2 muestra la longitud, L, de la aleta dividida en (M-1) partes iguales, con longitud Δx, cada una de ellas dando por resultado M nodos. Con frecuencia resulta satisfactorio contar un valor de M igual a 10. En general, se mejora la exactitud de la solución cuando se hace crecer el valor de M.
Comentarios
Publicar un comentario