Es un proceso en el cual el líquido pasa al estado de gas en el interior del líquido, donde el gas se concentra para forma burbujas que flotan hasta la superficie y desde ahí escapan al aire adyacente. La presión dentro de las burbujas debe ser grande para vencer la presión del agua que las rodea.
Si la presión atmosférica aumenta, la temperatura de ebullición se eleva y viceversa.
Cuando ascendemos a mayor altura sobre el nivel del mar, el agua hierve con temperaturas menores porque la presión disminuye. Pero los alimentos se cuecen cuando la temperatura del agua es elevada y no por la temperatura de ebullición, por lo tanto a mayor altura se debe esperar más tiempo para cocer los alimentos, por ejemplo un huevo duro en Concepción se cuece en pocos minutos y en Visviri (4070 m de altura snm, en el extremo norte de Chile) en varias horas. La ebullición es un proceso de enfriamiento, en condiciones normales el agua que hierve a 100º C, se enfría con la misma rapidez con la cual la calienta la fuente de calor, sino la temperatura del agua aumentaría siempre con la aplicación del calor.
El calor necesario para que una sustancia de masa m cambie de fase, se puede calcular de la siguiente forma:
Q = mL (13.4)
donde L es el calor latente del material, depende de la forma del cambio de fase y de las propiedades del material. El calor latente es la energía térmica necesaria para que un kilogramo de una sustancia cambie de un estado a otro, en el SI se mide en J/kg, también se usa la unidad cal/gr. Existen calores latentes de fusión, LF, de vaporización, LV, y de sublimación, LS, para los respectivos cambios de fase. Por ejemplo, para el agua a la presión atmosférica normal LF = 3.33x105 J/kg y LV = 22.6x105 J/kg. Los calores latentes de diferentes sustancias varían significativamente, como se muestra en la tabla 13.2.
Puesto que en la fase gaseosa, la distancia media entre los átomos es mucho mayor que en la fase líquida o sólida, se requiere mayor trabajo (y energía) para evaporar una masa de sustancia que para fundirla, por eso el calor de vaporización es mayor que el calor de fusión, como se observa en la tabla 13.2.
Comentarios
Publicar un comentario