Un recipiente de aluminio de 300g contiene 200g de agua a 10º C. Si se vierten 100 g más de agua, pero a 100º C, calcular la temperatura final de equilibrio del sistema. R: 34.6º C.
La figura 14.10 muestra la curva típica de la intensidad de radiación de un cuerpo negro en función de la longitud de onda de la radiación emitida, para diferentes valores de temperatura indicados como frío, templado y cálido. De acuerdo a la teoría cuántica, se encuentra que los cuerpos a una temperatura determinada, emiten radiación con un valor máximo para una longitud de onda λ dada. Al aumentar la temperatura de un cuerpo negro, la cantidad de energía que emite se incrementa. También, al subir la temperatura, el máximo de la distribución de energía se desplaza hacia las longitudes de onda más cortas. Se encontró que este corrimiento obedece a la siguiente relación, llamada ley del desplazamiento de Wien (Wilhelm Wien, alemán, 1864-1928):
λmaxT = 2897 (14.7)
donde λmax es la longitud de onda que corresponde al máximo de la curva de radiación (figura 14.10), en μm, y T es la temperatura absoluta del objeto que emite la radiación. La ley de Wien afirma que para la radiación de un cuerpo negro la longitud de onda de máxima emisión es inversamente proporcional a la temperatura absoluta. Con esta ley se demuestra que la emisión de radiación de la superficie terrestre tiene un máximo en cerca de 9.9 μm, que corresponde a la región infrarroja del espectro. También muestra que la temperatura del Sol, si el máximo de emisión de radiación solar ocurre en 0.474 μm, es del orden de 6110 K.
λmaxT = 2897 (14.7)
donde λmax es la longitud de onda que corresponde al máximo de la curva de radiación (figura 14.10), en μm, y T es la temperatura absoluta del objeto que emite la radiación. La ley de Wien afirma que para la radiación de un cuerpo negro la longitud de onda de máxima emisión es inversamente proporcional a la temperatura absoluta. Con esta ley se demuestra que la emisión de radiación de la superficie terrestre tiene un máximo en cerca de 9.9 μm, que corresponde a la región infrarroja del espectro. También muestra que la temperatura del Sol, si el máximo de emisión de radiación solar ocurre en 0.474 μm, es del orden de 6110 K.
Comentarios
Publicar un comentario